fbpx

Where do electric vehicle batteries come from?

electric vehicle lithium ion batteries

Introduction: Looking at the Bigger Picture

Almost 150 million electric vehicles (EVs) are set to be on the road  by 2030 according to a International Energy Agency (IEA) report. The IEA highlights that  global EV stock could even soar to 250 million should countries embrace stronger decarbonization policies as the world moves towards net-zero goals. However, while we often hear about the need for more EVs the energy storage systems that are critical to their deployment are not mentioned – but have you ever wondered where electric car batteries come from?

Lithium-Ion Batteries

Electric cars  use lithium-ion batteries as they are high-capacity and can recharge fully with minimal energy loss. The main components of these rechargeable batteries which are carbon, a metal oxide, and lithium. Within these batteries are five key technical elements, the anode, cathode, separator, electrolyte, and lithium ions. A typical EV battery (NMC532) contains roughly 8 kilos (17 lbs) of lithium carbonate, 35 kilos (77 lbs) of nickel, 20 kilos (44 lbs) of manganese and 14 kilos (30 lbs) of cobalt. There are a wide range of lithium batteries on the market that combine different metals and lithium, such as manganese or iron, but at their core, these are all lithium batteries.

As the key component of EV batteries, lithium demand has skyrocketed, while the market for lithium-ion battery packs and its components has grown considerably. EV batteries have entered into production relatively recently and the infrastructure needed to meet current demand is being built rapidly as countries seek to secure their own supply chains. In certain cases, EV batteries and their components have become core policy issues, exemplified by the U.S. Geological Survey’s designation of lithium as a critical material, and the Department of Energy’s National Blueprint for Lithium Batteries.

Component Issues

One of the core issues concerning the materials of EV batteries is sustainability. Cobalt, nickel and lithium are all extracted using environmentally-damaging methods. In addition to this, they have all been linked in one way or another to other socio-economic issues. As a result of this, considerable investments have been made to find opportunities to either improve the environmental impact of mining these metals, or creating new extraction methods capable of disrupting the industry.

Researchers are successfully finding ways of removing nickel and cobalt from battery compositions, with some believing the “cobalt problem is essentially solved,” as Davide Castelvecchi explains in Nature. As far as lithium is concerned, the technology sector has found new ways of extracting lithium in a more sustainable manner – like EnergyX’s LiTAS™ system, which uses Direct Lithium Extraction (DLE) to collect larger lithium yield  at a faster rate without using as much water or chemicals, and at a fraction of the cost.

Source of EV Batteries

China currently dominates the global EV and EV supply-chain market, but global governments are vying to secure their own supply chains. When it comes to the components that make up these batteries, they can be traced back to several specific countries. Half of the world’s cobalt originates from the Democratic Republic of Congo, while Indonesia, Australia, and Brazil make up the lion’s share of global nickel reserves, and South America’s ‘Lithium Triangle’ consisting of Bolivia, Chile and Argentina hold 75% of the world’s lithium.

At the moment, recycling makes up a negligible portion of EV batteries, but the industry is confident that once the market matures, recycled materials will have an important impact on the manufacturing process. Castelvecchi continues, “Battery and carmakers are already spending billions of dollars on reducing the costs of manufacturing and recycling electric-vehicle (EV) batteries. National research funders have also founded centres to study better ways to make and recycle batteries, […] a key goal is to develop processes to recover valuable metals cheaply enough to compete with freshly mined ones.

Conclusion: EV Batteries Are a Global Product

The future is electric, and global governments are working towards decarbonizing at very fast rates by reducing the emissions created by the transport and energy sectors. The rising popularity of electric cars has highlighted the importance of cooperation across governments and industries, as well as the need to ensure that sustainable development is taken into account at every step in the supply chain. As it currently stands, the lithium sector as well as the market for electric vehicles is controlled by China as it continues to enforce new low-carbon policies domestically and invests heavily in sourcing raw materials overseas. If other countries are serious about funding a green transition and its associated infrastructure, policies and investments must follow.