Welcome to 21st Century Lithium Production
LiTAS™
Lithium Ion Transport and Separation (LiTAS™) is EnergyX’s proprietary technology that stems from metal organic frameworks (MOFs) nanoparticles capable of selectively separating monovalent ions, such as lithium, from the rest of the ions in mixtures of high salinity solutions while maintaining stability in a myriad of conditions. No other technology has ever been able to do this.
Lithium being a specialty material that provides enhanced performance and unique characteristics to transform the energy industry, cost-effective and time-efficient extraction is the holy grail. EnergyX is working to master these problems, and is driving the growth of the global lithium industry while making low-carbon technology cheaper and more accessible.
Overview
LiTAS™ tech is the synthesis and characterization of mixed matrix membranes (MMMs) comprising mixtures of polymer and MOF to retain the attractive selectivity of the MOF, and the scalable and robust mechanical properties of polymers. EnergyX has designed and patented a proprietary scalable casting method to combine our metal organic framework nanoparticles with polymers to create the mixed matrix membranes in a thin film format.

LiTAS™ BREAKDOWN & IMPLEMENTATION
LiTAS™ TECHNOLOGY COMPARISON
While current membrane technology on the market falls short in one area or another, LiTAS™ is far more effective than any other technology currently available. Methods such as reverse osmosis can separate all ions out of water but are not selective. Nanofiltration can selectively separate ions, but cannot operate in high salinity environments (over 10% salinity) without dilution with freshwater. Other processes such as ion sorption and ion exchange can’t operate at high salinity, are a batch process versus a preferred continuous process, and require high amounts of fresh water and reagents with high power consumption.
EnergyX Membranes | Ion Sorption | Ion Exchange Resin | Nanofiltration | Reverse Osmosis | Forward Osmosis |
|
---|---|---|---|---|---|---|
Selectivity Li vs Na | ||||||
Selectivity Li vs Mg2+ | ||||||
Operates at High Salinity | ||||||
Continuous Process | ||||||
Adaptable Platform | ||||||
Enviromentally Neutral | ||||||
Low Power Consumption | ||||||
Non- Regenerative | ||||||
No Freshwater Required |
Lithium refinery
EnergyX has developed breakthrough, nanotechnology membranes capable of nearly instant separation with high recovery rates. Our proprietary LiTAS™ membrane technology isolates the lithium ions from a mixture, and create a monovalent lithium rich solution. As opposed to outdated methods of lithium extraction, recovery, separation, and refinery, such as evaporation ponds.
Stringing many LiTAS™ modules together into racks, and multiple racks into a larger system creates the overall facility to extract lithium from lithium enriched brine.
Conventional Ponds

LiTAS™ Direct extraction

Energy Storage
EnergyX is positioning itself to be a major player throughout the energy storage value chain. As renewable energy demand soars, the need for low cost, large-scale energy storage systems is also rising.
Lithium batteries have been identified as a major part of the future of any renewable energy transition, and their implementation in electric mobility and projects of various scales has shown off just how versatile they can be.
Overview
There are two elements in the global transition to renewable energy; energy generation and energy storage. First, the generation of renewable electricity, (i.e solar and wind) has seen prices drop dramatically making them economically favorable. However, at times when renewable energy generation ceases, such as at night for solar or on calm days for wind, we revert to burning fossil fuels over renewable energy storage. Therefore, the second element to a sustainable energy future is the storage capabilities of renewable energy so that we can use solar and wind energy even when the sun’s not out or the wind isn’t blowing. This is where lithium batteries and large scale energy storage systems come into play.


Battery Evolution
Just like the computer chip,batteries keep getting smaller, faster, and better. A long time ago, we started with lead-acid, now we have batteries powering cars, soon hopefully houses airplanes and whole cities. The energy storage revolution is upon us, and we think solid state lithium ion batteries are next.
EV Revolution
The market for zero-emission, hybrid and fully electric vehicles is estimated to be worth $912 Billion by 2026. IEA predicts there could be 130 million EV’s on the road by 2030. However, there are significant issues to be addressed, and batteries need to be further reduced in cost, perform more efficiently and have long lifespans. Solid state batteries accomplished the like.

Solid State Battery Systems
EnergyX is working on solid state battery electrolyte technology using its core LiTAS™ nanotechnology to solve some of these problems. Solid state batteries are the Holy Grail of energy storage as the evolution of batteries continues.
During our preliminary research we have seen that lithium ions transport through our metal organic framework nanoparticles at unprecedented rates. These results translate to extraordinary levels of conductivity and possible application as a solid state separator inside the battery.
Overview
Solid-state batteries are a transformational extension and optimization of lithium-ion batteries. The fundamental reason solid state is ideal is because it maximizes the energy density of battery, while lowering the weight, and making it safer. All of these characteristics are paramount to improved function.

SOLID VS. LIQUID STATE FLOW COMPARISON
Lithium flows from the anode to the cathode in a battery. The battery chemistry solid state batteries are superior to liquid state electrolytes. The basis of how our LiTAS™ cell work with a membrane based solid state electrolyte and separator.